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This note shows how indifference expands the set of subgame-perfect equilibria in an illustrative model of spatial competition. 

The model concerns sequential location for three firms on a unit segment, with consumers buying the good from the nearest 

firm. Indifference occurs because, when the third firm enters in-between the first two, it gets the same payoff independently of 

its particular location. The note ends with a discussion of a particular equilibrium outcome, the one where the indifferent 

player is allowed to use his indifference optimally, in order to influence other players’ strategies. 

1. Introduction 

Several recent papers on spatial competition [Prescott and Visscher (1977) Lane (1980) and Eaton 
and Wooders (1983)] have modeled their problem using multi-stage games. The analysis concentrates 
on sequential or subgame-perfect equilibria, which allow to rule out incredible threats, and to use 
backward programming to find the (hopefully unique) equilibrium of the game. 

Incredible threats are threats a player would not find in his interest to carry out, because other 
moves are strictly better for him at that particular stage of the game. The word ‘strictly’ is crucial 
since, when there is indifference between several moves, there is a breakdown of the usual 
backward-induction argument: a player’s optimal strategy will usually depend on how the indifferent 
players moving after him will resolve their ties. The set of equilibria is expanded because the 
indifference can be resolved in different ways, which in turn affects other players’ payoffs and 
strategies. 

This point is important in the spatial competition literature, where indifference can naturally arise. 
Section 2 illustrates this problem, through a simple example in Hotelling’s tradition, where the 
market consists of a continuum of consumers uniformly distributed on a linear segment and of three 
firms entering sequentially [this model was first analyzed by Prescott and Visscher (1977)]. Con- 
sumers earth buy one unit of output from the nearest firm, and the element of indifference is that, 
when the third firm enters in-between the other two, it gets the same market share independently of 
the particular location choice. The example is very simple, which allows us to fully characterize the 
equilibrium set. We suggest moreover how the indifference problem also appears in other models of 
spatial competition. 

The existence of multiple equilibria leads to the general issue of the choice of a particular 
outcome. One way of resolving the indeterminacy would be to allow players to choose ‘optimal’ ways 
to resolve their ties. Indeed, if a player is indifferent between two moves, he can still hope to 
influence his payoff by the consequences his strategies have on other players, and he will thus care 
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about how his rivals perceive the ties will be resolved. Section 3 briefly discusses the extent to which 
this idea can be used to choose a particular equilibrium. 

2. Example 

2.1. Basic setup 

The example concerns a pure location model on a unit segment, with three firms, A, B and C, 
entering sequentially (in that order). We assume exogenously fixed prices, and consumers (distributed 
uniformly on the segment) who buy exactly one unit of the good from the nearest firm. The payoffs 

are non-negative numbers (a, b, c) such that a + b + c = 1. The cost of entering the market and the 
marginal cost of production are zero, but relocation is prohibitively costly. 

We restrict ourselves to subgame-perfect equilibria, which amounts to saying that firms expect 
their rivals to act in order to maximize profits conditional on previous moves of the game. We 
concentrate only on pure strategies. Such strategies take the following form for each firm: 

- Firm A’s strategies are locations xA E [O; 11. 
- Firm B’s strategies are functions associating a location xg to each possible xA. 
_ Firm C’s strategies are functions associating a location xc. to each possible pair (x,; xe). 

2.2. Element of indifference 

Solving this location problem by backward induction involves computing first the optimal xc for 
C given each (x A; x,), then the optimal xg for B given xA and C’s optimal reaction to (x,; x,), 
and finally A’s optimal xA given B and c’s optimal reactions. This argument is, however, plagued 
here by the difficulty that, whenever it is optimal for C to locate in-between A and B, any particular 
location in this interval is as good as any other (C will get in any case one-half of it as market share). 
In order to rescue the backward-induction mechanism, Prescott and Visscher (1977) restrict c’s 
strategy set by assuming that, in that case, it will always locate at the middle-point of the interval. 
They also assume this restriction to be common knowledge, which gives them the unique equilibrium 
location ( xA = 0.25, xa = 0.75, xc = OS), with A and B each receiving 0.375, and C getting 0.25. As 
they stress, this restriction is arbitrary. We now drop it, and compute the set of sustainable outcomes, 
starting first by ruling out some allocations. 

2.3. Narrowing the set of potential equilibria 

The following restrictions can be derived from individual rationality: 

_ Firm C should not get less than 0.25 in equilibrium: it will go either in-between A and B, or just 
‘next to them’, ’ depending on 0.50. (xa - xA) >< max( x A; 1 - xe } (assuming without loss of 
generality xA I xg). In order to choose xc E [x,; xa], xn - xA must equal at least 0.50, which 
gives C at least 0.25. When xg - xA < 0.50, then max{ xA; 1 - xe} is also at least 0.25. 

_ Firm A should not get less than 0.25 in equilibrium: by choosing x+, = 0.25, xg 2 0.75 is optimal for 
firm B, and the worst that can happen to A is having C just next to its right, which gives A 0.25. 
Assuming, without loss of generality, xA I 0.50, it follows that A will always choose xA I 0.25: if 

’ We assume a firm can locate arbitrarily close to another, so that, for example, locating ‘just to the left’ of xA( 5 x,) gives 

firm C the total segment [O; .+,I. 
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Fig. 1. Set of subgame-perfect equilibrium allocations. 

xA > 0.25, B will find it profitable to send C just to the left of A by choosing xa = 1 - xA + e, with 
e arbitrarily small. This would give A strictly less than 0.25. 

_ Firm B should not get less than 0.25 in equilibrium: firm B can guarantee itself at least (1 - x*)/3 
by going at xa = xA + 2 * (1 - x*)/3 (at worst, C will locate just next to it). With xA _< 0.25, this 
yields a market share of at least 0.25 to B. 

At this point, we are left with the set of potential equilibrium payoffs represented by area DJF 

(see fig. 1, where C’s share equals 1 - a - b). Not all these outcomes can be sustained, however. For 
example, we saw that B can get by itself at least (1 - x*)/3. Giving B a share of 0.25 thus implies 
xA = 0.25. The best C can get is then 0.375 (when x a = 1). This implies xc = 0.50 (in order to give B 

a share of 0.25), and thus A should receive at least 0.375 when B gets 0.25. 
It is when A gets 0.25 that C can get its best market share: the constraints on C’s market share c 

are: c 5 (1 -x*)/2 (maximum when xa = 1) and c 5 1 - 0.25 - (1 -x*)/3 (where 0.25 is A’s 

market share, and (1 - x*)/3 is the minimum B can guarantee itself). The idea is that a higher xA 
lowers the joint market share of B and C, but at the same time lowers B’s minimum market share. 
From C’s point of view, one can verify that the optimum is xA = 0.10, xg = 1.00 and xc = 0.40 (this 
gives A a market share of 0.25, B a share of 0.30, which is (1 - xA)/3, and C a share of 0.45). 

We are thus left with a set of potential equilibrium payoffs represented by the shaded area DHGF 

of fig. 1. 

2.4. Sustainability 

We now show that the entire shaded area of fig. 1 represents perfect equilibria of the location 
game, depending on C’s strategic use of its indifference: 

Segment D-F is the one where firm C is worst off (it gets only 0.25). This can be sustained if C 
chooses xc = xA + (Y. (xg - x,), with (Y E [O; 11, whenever choosing xc E [x,; x~] is optimal. This 
implies xA = 0.25 and xs = 0.75. This is the case chosen by Prescott and Visscher, who assume 
moreover (Y = 0.50, which yields point E. 
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Segment G-F gives B a share of 0.25, which, as stressed above, implies xA = 0.25 [since B should 
get at least (1 - x*)/3]. A point in this segment giving a * to A can be sustained by the following 
strategy for C: ‘A should choose xA = 0.25, otherwise C goes next to it, whenever choosing 
xc E [x,;x,] is optimal; given xA = 0.25, B should choose xs = 0.75 + 2 + (0.50 - u * ), otherwise C 
goes next to B (whenever xc E [x,; xe] is optimal). If A and B collaborate with C, C chooses 

X c = 0.75 - 2 . (0.50 - a * ).’ In equilibrium, a = a *, and b = 0.25, with A and B unable to be better 
off by not collaborating with C. In this case, the minimum A will get is when xs = 1 and xc = 0.50, 
which is represented by point G in fig. 1. 

Point H is the most favorable for firm C. We have seen it involves (xA = 0.10, xs = 1, xc = 0.40). 
It can be enforced by the following strategy for C (whenever choosing xc E [x,; xB] is optimal): 

(i) A should go at 0.10 and B at 1. If A does not follow this rule, B should still go at 1. Then C will 
choose xc = xA. If xg # 1, C chooses xc = xg. Th. IS tves B the incentive to collaborate, and by g’ 
choosing xA f 0.10, A gets at most 0.25 (for xA = 0.25). 

(ii) If xA = 0.10, but xs # 1, C will choose xc = xg, y ielding a share of at most (1 - x*)/3, = 0.30, 

for B. 

By this rule, neither A nor B is better off by not cooperating. Points on the segment H-G can be 
obtained by the same rule but allowing x,., to move gradually to the right, with xc moving also to 
the right such as to give B exactly (1 - x*)/3. 

Finally, segment D-H gives 0.25 to firm A, and can be the result of various rules, since A cannot 
guarantee itself more by playing individually. Starting from H, which we have considered above, C 
can allow xs to move to the left, up to the point where xti = 0.70 (i.e., the point where C is just 
indifferent between xc = 0.40 and locating to the right of B), which leads to the allocation 
(a = 0.25, b = 0.45, c = 0.30). On e can also start from point D (xA = xc = 0.25, xri = 0.75) and 
move xa to the right [by C’s strategy (when xc E [x,; xe] is optimal): ‘xc = xri, unless B goes at a 
particular xg > 0.75; then xc = ~~‘1. This can be done until xs = 1, which yields (a = 0.25, 
b = c = 0.375). The whole segment D-H can thus be sustained. 

We have shown how the entire frontier can be sustained. The interior of this set can be sustained 
by combinations of the various rules described above for C, especially since in these cases A and B 
get both strictly more than what they can guarantee themselves by playing alone. 2.3 Note that the 

’ We still have to check that there exist locations satisfying xA 5 0.25, xn z (2+ x*)/3 and xc E [x,: xn] sustaining such 
interior points. We show this by ‘slicing’ DHGF into three parts: 

- For area EGF, start from a point on GF. It implies xA = 0.25, xn = 0.75 + y, x c = 0.75 - y, with 0 5 y < 0.25. One can 

then move vertically in fig. 1 up to segment EF by gradually shifting xa to the left, up to 0.75. 
_ For area DIE, start from a point on DI. It can be sustained by xA = xc = 0.25, and xn = 0.75 + y, with 0 < _v < 0.25. 

One can then move horizontally in fig. 1 by shifting xc to the right and xa to the left with the .wme intensif_y. Segment 

DE is then reached when xn = 0.75 and xc = 0.25 + _y. 
- Finally, for area IHGE, one can start from points on IH and GH and move linearly to E (which implies xA = 0.25, 

xc = 0.50, xn = 0.75). For example, we have seen that points on IH can be sustained with locations xA = 0.10, 
xc = 0.40, xa =l.OO- J. with 0 5 y ( 0.15. Starting from there, one moves linearly towards E by shifting xA towards 

0.25, xc- towards 0.50 and xa towards 0.75, with appropriately chosen intensities [e.g., xA has to move 50% faster than 

xc, since (0.25-0.10)=1.5 (0.50-0.40)]. 

The same method can be used when starting from points on GH. 
’ The discussion above assumed that the identities of A and B were directly observable by C. In Dewatripont (1986), we show 

that an outcome arbitrarily close to the point H in fig. 1 can still be sustained by firm C when the identity of A and B is not 

public information (in order to sustain such an outcome, C has to design a strategy which will reveal the identity of A and B 

through their respective location choice). 
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points on the segments D-H, H-G and G-F are such that firms A and B are indifferent between 
cooperating or not. Such indifference is, however, of a totally different nature from the indifference 
analyzed above: it disappears whenever A and B receive an additional E (arbitrary small) as market 
share, i.e., whenever we move into the interior of the shaded area. This is not true for C’s 
indifference, which is a ‘structural’ feature of the model. 

2.5. Significance of the example 

The example discussed in this section is only illustrative. Its assumptions are too restrictive to be 
useful as a descriptive location model. However, while the number of equilibria will depend crucially 
on the amount of indifference of firm C and thus on particular assumptions of the model, the 
multiplicity of equilibrium outcomes will remain in numerous cases: 

- The model makes the number of entrants exogenous. One way to relax this assumption is by 
postulating a fixed entry cost. For example, a fixed cost of 0.2 would still lead to three firms in the 
market in equilibrium. It would also limit the strategic possibilities of firm C: punishing A and B 
is made more difficult by the necessity to prevent a fourth firm from entering. Inside these limits, 
the problem is, however, the same as above. 

- Price competition can also be introduced, as a second stage of the game. Prescott and Visscher 
(1977) Lane (1980), and d’Aspremont et al. (1979) provide examples of this as well as numerical 
computations. Economides (1983,1984) also presents general results for the case of simultaneous 
entry, and Eaton and Wooders (1983) do the same for sequential location. In this last case, the 
indifference of the example above disappears: locating as far away as possible from rivals becomes 
strongly optimal, in order to limit the intensity of price competition. Through endogenized entry 
(with fixed costs), the outcome is moreover unique. Note, however, that having price competition 
alone does not eliminate all indifference problems: if one assumes the number of entrants to be 
exogenous, the last firm to enter may face several intervals of equal length, and be indifferent 
between their respective middle points. While the degree of indifference (and thus of ‘power’) is 
more limited than in the example above, the possibility of influencing the strategies of the earlier 
firms remains. 

These two remarks concentrated on exogenous assumptions of the model. There is an endogenous 
result of the model also worth considering: in some of the sustainable equilibria (for example, point 
H), the latter one enters, the better-off one ends up. The exogenous order of entry assumed by the 
model then becomes questionable (as stressed by Prescott and Visscher): why could firm A, for 
example, not wait until someone else enters? One easy and ad hoc way to solve the problem is to 
assume that entry takes time, and that the high profits made before the next firm enters more than 
outweigh the subsequent loss in market share due to entering first. A more reasonable treatment 
would explicitly introduce dynamics and uncertainty about future entry, but is beyond the scope of 
this note. 

3. Discussion 

Section 2 has illustrated how indifference significantly expands equilibrium sets in a sequential 
model of spatial competition. One way to avoid this weakening of the predictive power of the model 
is to introduce additional features which eliminate indifference. Eaton and Wooders’ (1983) model 
has this property, through the simultaneous introduction of price competition and endogenous entry. 
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While this approach is certainly viable in some cases, it can be potentially costly in terms of realism, 
or be impossible, in others. One may thus instead recognize indifference as a given, and concentrate 
on the choice of a particular equilibrium outcome. Resorting to ‘focal points’ would be one solution: 
for example, point E could be a candidate, since it assumes firm C will always choose to be equally 
spaced between A and B (this was Prescott and Visscher’s assumption). However, there is no strong 
incentive for C to stick to this solution. Ex ante, it would instead like to announce another strategy: 
from its point of view, point H is the optimum, and it would like A and B to believe that it will 
follow a strategy which sustains H. Choosing the outcome favorable to the indifferent player can in 
fact be rationalized by three types of arguments: 

_ There is an incentive for the indifferent player to find ways to commit ex ante to resolving its ties 
so as to achieve its preferred equilibrium outcome (note, however, that indifference is not ‘far 

away’ from strict preference; in reality, one might see players trying to influence the tastes of the 
indifferent player). 

_ Indifference means power, freedom of action. While the argument of subgame-perfection is to rule 
out Nash equilibria supported by incredible threats, the idea here is to allow for all credible ones. 

_ The models in the spatial competition literature all assume ‘sophisticated’ players, i.e., players who 
expect profit maximization from their rivals. This solution means that players expect their rivals to 
use all possible means to achieve it. 

Since the problem of indifference goes beyond spatial competition models, it would be interesting to 
formalize this selection criterion among equilibria, and to see how it can be generalized to the case 
where several players show indifference. 
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