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Econometrica, Vol. 55, No. 4 (July, 1987), 911-922 

EQUILIBRIUM IN HOTELLING'S MODEL 
OF SPATIAL COMPETITION 

BY MARTIN J. OSBORNE AND CAROLYN PITCHIK' 

We study Hotelling's two-stage model of spatial competition, in which two firms first 
simultaneously choose locations in the unit interval, then simultaneously choose prices. 
Under Hotelling's assumptions (uniform distribution of consumers, travel cost proportional 
to distance, inelastic demand of one unit by each consumer) the price-setting subgames 
possess equilibria in pure strategies for only a limited set of location pairs. Because of this 
problem (pointed out independently by Vickrey (1964) and d'Aspremont et al. (1979)), 
Hotelling's claim that there is an equilibrium of the two-stage game in which the firms 
locate close to each other is incorrect. 

A result of Dasgupta and Maskin (1986) guarantees that each price-setting subgame 
has an equilibrium in mixed strategies. We first study these mixed strategy equilibria. We 
are unable to provide a complete characterization of them, although we show that for a 
subset of location pairs all equilibria are of a certain type. We reduce the problem of 
finding an equilibrium of this type to that of solving three or fewer highly nonlinear 
equations. At each of a large number of location pairs we have computed approximate 
solutions to the system of equations. 

Next, we use our analytical results and computations to study the equilibrium location 
choices of the firms. There is a unique (up to symmetry) subgame perfect equilibrium in 
which the location choices of the firms are pure; in it, the firms locate 0.27 from the ends 
of the market. At this equilibrium, the support of the subgame equilibrium price strategy 
is the union of two short intervals. Most of the probability weight is in the upper interval, 
so that this strategy is reminiscent of occasional "sales" by the firms. We also find a 
subgame perfect equilibrium in which each firm uses a mixed strategy in locations. In fact, 
in the class of strategy pairs in which the firms use the same mixed strategy over locations, 
and this strategy is symmetric about 0.5, there is a single equilibrium. In this equilibrium 
most of the probability weight of the common strategy is between 0.2 and 0.4, and between 
0.6 and 0.8. There is a wide range of pure Nash (as opposed to subgame perfect) equilibrium 
location pairs: the subgame strategies in which each firm threatens to charge a price of 
zero in response to a deviation support all but those location pairs in which the firms are 
very close. 

KEYWORDS: Spatial competition, product differentiation, Hotelling's location model. 

1. INTRODUCTION 

HOTELLING (1929) formulated the following model of the choiceof location and 
price in a duopoly. Consumers are uniformly distributed on the line segment. A 
single good is produced at zero cost by two firms, each of which chooses a 
location in the line segment and a price. Each consumer pays a travel cost which 

' We are grateful to Andrew Muller, David Kreps, and two anonymous referees for helpful 
comments and encouragement, to Shmuel Zamir for providing us with the details of some work of 
his with Yuval Shilony on this topic, and to Nikos Economides for conversations which stimulated 
our interest in the topic. Osborne's research was partially supported at Columbia University by grants 
from the Columbia University Council for Research in the Social Sciences, and from the National 
Science Foundation (SES-8318978 and SES-8510800). Pitchik's research was partially supported at 
New York University by grants from the Office of Naval Research (contract N0014-78-C-0598), the 
National Science Foundation (SES-8207765), and the C.V. Starr Center for Applied Economics, and 
at the University of Toronto by a grant from the Social Sciences and Humanities Research Council. 
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912 MARTIN J. OSBORNE AND CAROLYN PITCHIK 

is proportional to distance, and buys one unit of the good from the firm for which 
price plus travel cost is lowest. 

We can think of this as a two-stage game between the two firms. In the first 
stage each (simultaneously) selects a location at which to operate. Then, having 
observed the locations selected, each (simultaneously) names a price. The con- 
sumers choose according to the criterion above, and the firms receive their profits. 

Fixing the location of one firm, the other has an incentive to move closer, so 
as to capture more customers. But since price is named after locations are set, 
and since firms that are close can be expected (following the logic of Bertrand) 
to compete fiercely, there is a countervailing pressure on each firm to keep its 
distance. Nonetheless, Hotelling argued that the firms will locate fairly closely 
together; he presented an argument in the form of a supposed equilibrium. 

Vickrey (1964, pp. 323-334) and (independently) d'Aspremont, Gabszewicz, 
and Thisse (1979) show that Hotelling's argument is flawed: for locations that 
are close the pair of price strategies proposed by Hotelling is not an equilibrium. 
Moreover, d'Aspremont et al. show that no pure strategy price equilibrium exists 
for such locations. A number of authors have studied variations of Hotelling's 
model in which pure strategy equilibria do exist, but (to our knowledge) no one 
has yet produced an equilibrium for Hotelling's original formulation. 

We study equilibria in which the firms use mixed strategies in the second 
stage.2 We present a strategy pair for which the locations are manifestly the 
first-stage actions of a Nash equilibrium, and we argue (although are unable to 
prove) that the strategy pair is a (subgame) perfect equilibrium. Moreover, we 
argue (with somewhat less conviction) that it is the unique perfect equilibrium 
in which the firms use pure strategies in the first stage. In this equilibrium, firms 
locate (on the unit interval) symmetrically, at the distance 0.27 from the two 
endpoints; it is worth noting that this is close to the (transportation cost) efficient 
placement of 0.25 from each endpoint. The subsequent price-setting stage requires 
the firms to randomize. The subgame equilibrium strategies we find are shown 
in Figure 1 for a number of symmetric location pairs; their qualitative features 
at our location equilibrium are reminiscent of occasional "sales." 

Our analysis is complicated (and, in the end, less than complete) because of 
the difficulty of the price-setting subgames. Our first result identifies a region P 
(in the space of location pairs) such that: 

(i) If the firms choose a pair of locations in P, then there is a unique subgame 
equilibrium, which is in pure strategies. 

(ii) If the firms choose a pair of locations in the complement of P then there 
is no pure strategy subgame equilibrium. 

We specify the game so that, by the results of Dasgupta and Maskin (1986), 
a subgame equilibrium exists for each pair of locations. It remains to characterize 
these equilibria for locations in the complement of P. To this end, we identify a 
type of (mixed strategy) subgame equilibrium with the following qualitative 

2 Gal-Or (1982) and Shilony and Zamir (in unpublished work reported to us in private correspon- 
dence) have previously obtained preliminary results on the outcome of allowing firms to randomize 
in Hotelling's model. 
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SPATIAL COMPETITION 

price -» 

FIGURE 1-The equilibrium price strategies at some symmetric location pairs. 

Each curve is the cumulative distribution function of prices used by the firms at a symmetric 
location pair; the value of z is the distance between the firms. Horizontal sections of the distribution 
functions are indicated by dotted lines. When z = 0 the equilibrium strategy of each firm is to set a 
price of 0 with probability one; when z = 0.5, it is to set a price of 1 with probability one. The value 
of z of 0.46 corresponds to the (pure) location equilibrium in which each firm is at the distance 0.27 
from an endpoint. 

features. The support of each firm's strategy is either a single interval, or the 
union of two intervals. If the support of each strategy is the union of two intervals, 
then each price in each firm's lower interval is just low enough to attract all the 
consumers when the other firm charges some price in its upper interval. (In this 
case the lower prices can be thought of as "sale" prices.) We are able (in 
Proposition 3) to give a fairly tight characterization of any subgame equilibrium 
that is of this type, and we are able to identify a subset S (see Figure 2) of the 
complement of P in which every subgame equilibrium is of this type. This leaves 
the complement of P u S to worry about. We are unable to show that a subgame 
equilibrium of our type exists for location pairs in this set, although we show 
(in Proposition 2) that as the locations get closer together, all equilibria approach 
the Bertrand equilibrium, in which prices and profits are zero. 

Our characterization of the (mixed strategy) subgame equilibria comes in the 
form of the solution of three or fewer highly nonlinear equations, together with 
some side inequalities. We have used computational methods to obtain approxi- 
mate solutions to these equations for a large number of location pairs in the 
complement of P (both inside and outside S). The strategy pairs associated with 
these approximate solutions are e-equilibrium for e < 10-7. For location pairs in 
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914 MARTIN J. OSBORNE AND CAROLYN PITCHIK 

a subset T2 of the complement of P (see Figure 2) we can show that the 
approximate equilibria are very close to actual equilibria.3 For location pairs in 
the complement of P u T2 we cannot show that our approximate equilibria are 
close to actual equilibria. A result of Kuhn and MacKinnon (1975) (see also 
Anderson (1986)) ensures that any approximate solution of our equations is close 
to an exact solution when the degree of approximation is sufficiently small. While 
this has no formal implication for our calculations (since it is not possible to 
know what is "sufficiently small"), the result is suggestive. In fact, since the 
approximate solutions we found, given a wide variety of initial conditions, vary 
systematically with the location pair, we believe that at each location pair in the 
complement of P, not only is our approximate subgame equilibrium close to an 
exact equilibrium, but also this exact equilibrium is the unique subgame equili- 
brium of our type. We cannot prove this, but we believe the evidence is persuasive. 

With these results, we return to the choice of location. We identify a pair of 
locations (falling in S, but not in T2) that gives a Nash equilibrium. We know 
that this is a Nash equilibrium, because we can find (imperfect) out-of-equilibrium 
subgame strategies that support it. But this is not quite satisfactory; a wide range 
of location pairs give imperfect equilibria (see the discussion in Section 4). 

We believe that the equilibrium we identify is perfect. The subgame strategies 
which make it perfect are those we found by computation. We are prevented 
from being certain that the equilibrium is perfect because we cannot be sure that 
the payoffs to the approximate subgame equilibrium we found in the complement 
of P u T2 are close to those of exact equilibria. 

Moreover, if we have indeed identified the unique subgame equilibrium for 
each location pair, then our computations show that the equilibrium we find is 
the only perfect equilibrium in which the location choices are pure. (In Section 
4 we discuss the existence of perfect equilibria in which the location choices are 
mixed.) 

We are sorry to be reporting such incomplete results. We hope that our work 
will provide another researcher with enough leads (finally) to nail down the 
perfect equilibrium (or equilibria) of Hotelling's game. 

In Section 2 we specify the game precisely, in Section 3 we discuss our results 
on the subgame equilibria, and in Section 4 we consider location choice. In 
Appendix 1 we give outlines of the proofs of the results in Section 3; in Appendix 
2 we discuss our computational methods. 

2. THE MODEL 

Consumers are uniformly distributed on the line segment [0, 1]. We normalize 
the cost of travel to 1 per unit distance. Each of two firms chooses a location in 
[0, 1]. Let xl be the distance of firm 1 from 0, and let X2 be the distance of firm 
2 from 1. For each pair of locations (xI, x2), let R(x1, x2) be the game in which 
the firms simultaneously choose prices. Consider the case in which firm 1 locates 

3 It follows that, at each of the finite number of location pairs in T2 which we examined, an 
equilibrium of our type exists. 
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SPATIAL COMPETITION 

to the left of firm 2 (i.e., xI + 2 < 1). Let pi be the price charged by firm i, and 
let z = 1 - - x2, the distance between the firms. If pi < pj - z, all consumers buy 
from firm i, while if p -z Pi Pj +z, the fraction xi+(p -pi +z)/2= 
(pj -pi + 1 + xi - xj)/2 does so. (Whenever the indices i and j appear in the same 
expression, i j; the division of consumers when p, = pj - z is unimportant.) The 
cost of production is zero. Thus the payoff of firm i in F(xl, x2) when xI + x2 < 1 
is 

(Pi if Pi<pj-z, 
Ki(pi, pj) = pi (pj-pi mi)/2 if pj-z pi<pj+z, 

0 if p + zpi, 
where mi = +xi-xi. Given the symmetry of the problem, we can use these 
payoffs to define the payoffs in F(xI, x2) for every location pair (xI, x2). 

Let r be the two-stage game in which the firms first simultaneously choose 
locations, and then, for each location pair (xl,x2), play the price-setting 
(sub)game F(xl, x2). We are interested in the equilibria of F. In particular, we 
seek a subgame perfect equilibrium of r. First we study the Nash equilibria of 
the subgame r(xi, x2) for each location pair (xI, x2). 

3. EQUILIBRIUM IN THE PRICE-SETTING SUBGAMES 

By the following result, each of the price-setting subgames has a Nash equili- 
brium. (Here and subsequently we allow the firms to use mixed strategies.) 

LEMMA: For each pair (xI, x2) of locations, the subgame F(xi, x2) has a Nash 

equilibrium. 

PROOF: Consider the restricted subgame in which the pure strategy set of each 
firm is [0, m], for some m> 1. By Theorem 3 of Dasgupta and Maskin (1986) 
this game has a Nash equilibrium. But if m is large enough (greater than 3, for 
example), the payoff function Ki is nonincreasing in Pi when pi > m, for each 
0 < pj < m, so that any equilibrium of the restricted game is an equilibrium of the 
unrestricted game. 

For a subset of location pairs (xI, x2), the only equilibrium of F(xi, x2) is in 
pure strategies, as described in the following result. (Since the problem is sym- 
metric, we restrict attention here and subsequently to the case xI + x2 1.) 

PROPOSITION 1: If (1 + (xi-xj)/3)24(xi +2xj)/3 for i= 1, 2 (region P1 of 
Figure 2) then r(xl, x2) has a unique equilibrium, which is pure, in which i sets the 
price Pi = 1 +(xi-xj)/3 and obtains a profit of (1 +(xi -xj)/3)2/2, for i = 1, 2. If 
X +X2= 1 (region P2) and every consumer has a finite reservation price, then 
r(xl, x2) has a unique equilibrium, which is pure, with P =P2 = O and profits of 
zero. For no other location pair is there a pure equilibrium. 

The equilibrium in region P (=P1 u P2) is the one found by Hotelling. The 
extent of P is established by d'Aspremont et al. (1979), who also show that 
both equilibria are unique within the class of pure equilibria. We prove in 
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FIGURE 2-Types of equilibrium in the price-setting subgames F(x1, x2). 

The solid lines separate the regions TI, T2, and P1; the dotted lines subdivide TI and T2. Region 
P2 is the line segment joining (1, 0) and (0, 1); region S is the area below the dashed line. If (xI, x2) 
is in P = P1 u P2 then the unique equilibrium of F(x1, x2) is pure. In region S an equilibrium must 
be of type T In regions TI and T2 we find approximate equilibria of type T satisfying the following 
conditions: 

Tla: bi-a, =2z for i=1, 2, 
TIb,: bi-ai<2z and b, -aj=2z, 
TI c: b, - ai < 2z for i = 1, 2, 
T2a,: bi = bj - z, 
T2b,: b,>b -z. 

Appendix 1 (see (c), and the discussion after (i)) that there is no mixed equili- 
brium4 in region P. 

In Appendix 1 we establish a number of properties of the equilibria for location 
pairs in the complement of P. In particular, we show the following. 

PROPOSITION 2: Every equilibrium of r(x1, X2) converges to the pure equilibrium 
(PI,P2)=(O,O) asX +X21+ 1. 

To describe our results further, let (F1, F2) be an equilibrium (each Fi is a 
cumulative probability distribution function over prices), and let ai and bi be 
respectively the smallest and largest prices in the support of Fi, for i = 1, 2. We 

4 The restriction of finite reservation prices is very weak. Without it, there are mixed equilibria 
when xl + x2 = 1 in which each firm charges arbitrarily high prices with positive probability. (Shmuel 
Zamir pointed this out to us in private correspondence.) An equilibrium of this type does not exist 
for any other location pair (see (i) of Appendix 1). 
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SPATIAL COMPETITION 917 

show that for a range of location pairs, (F1, F2) must take a specific form. Define 
an equilibrium to be of type T if bi - ai - 2z, each Fi is atomless except possibly 
at bi, and either (i) the support of each Fi is [ai, bj - z] u [aj + z, bi], and each F, 
has an atom at bi if and only if bi - ai < 2z (type Ti), or (ii) the support of Fj is 
[aj, bj], that of Fi is [aj - z, bj - z] u {bi} with bi - bj - z(i = 1 or 2), Fi has an atom 
at bi, and Fj has an atom at bj if and only if bi > bj - z (type T2). The nature of 
the supports of F, and F2 in a type Ti equilibrium with bi - ai < 2z for i = 1, 2 
is shown in Figure 3. Our result (the proof of which is outlined in Appendix 1) 
is as follows. 

PROPOSITION 3: Every equilibrium of r(x1, X2) in which bi - ai S 2z for i = 1, 
2 is of type T If (X1, X2) is in region S (see Figure 2) then bi - ai 62z for i = 1, 2 
in every equilibrium of r(x, X2), so that every equilibrium of r(x, X2) is of type T. 

For (F1, F2) to be an equilibrium of type T it is necessary and sufficient that 
for i= 1, 2, (1) Fj is such that the profit Kj(p, Fj) of i is constant (say equal to 
Ej) on the interior of the support of Fi, and on the union of this with bi if F, 
has an atom at bi (roughly, each firm is indifferent between actions taken with 
positive probability), and (2) Kj(p, Fj) _ Ei for all p outside the support of Fi. 

The condition that K,(p, Fj) be constant on the interior of the support of F, 
is equivalent, upon differentiation with respect to p, to the condition that Fj 
satisfy an integral-differential equation. (A standard argument5 shows that each 

P2| I I 1 |//P2 + 

a2 = ( )/2 

0 a1 b2-Z a2+Z b1 P1- 

FIGURE 3-The supports of the equilibrium strategies in a type Tlic equilibrium of F(x1, x2). 

In region Tlic, the supports of the equilibrium strategies in F(x1, x2) take the form shown. (For 
each value of p1, p, - (p, + m )/2 maximizes the payoff of firm i in (p, - z, pj + z).) In the other regions, 
the forms of the supports are indicated in Figure 2. 

5 See, for example, Solution to Problem 17 on p. 294 of Karlin (1959). 
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F, is differentiable on the interior of its support). This equation may be differenti- 
ated again and, in the case of a type T1 equilibrium, solved, subject to the 
condition Fj(aj) = 0, to give 

e-a- 

-exp (2x +Aj exp (2 h(s, , xiz) ds 

if aj 
, p bi- z, 

(1) Fj()- - 
(1-j) exp ( 2 - ep - (j Z) Jh (s,,z)d 

if a + z p <b, 

for some Aj and Bj, where 8j is the size of the atom in Fj at bj, and h(s, x, z)= 
(s -z)-2 exp ((s - z)/2x). (The integrals can be expressed as infinite series by 
making the substitution t = (s - z)/2x, integrating by parts, and using the fact 
that (e'/t) dt=ln IltI+' 1= t"/nn!.) The case of a type T2 equilibrium can be 
dealt with in a similar fashion. 

If Fj is defined by (1), the derivative of Ki(p, Fj) is constant on the interior 
of the support of Fi. By substituting Fj into the expression for Ki(p, Fj) for 
i= 1, 2, we obtain conditions on (ai, bi, 8i, A,, Bi) for i 1, 2 which ensure that 
this derivative is zero. A number of other conditions have to be satisfied for 
(F1, F2) to be an equilibrium: if Ki(p, Fj) = Ei for ai, p bj- z, then we need 
Ki(p, Fj) to be equal to the same constant Ei for aj + z  p < bi; we need Fj(p) - 0 
for all p in the support of Fi, and Fj(bi - z) = Fj(ai + z), so that Fj is a distribution 
function; and we need Ki(p, Fj.) Ei for all p outside the support of Fi. We 
obtain from these conditions ten equations and eight inequalities which the ten 
variables (a,, bi, Si, A,, Bi) (i = 1, 2) must satisfy. Simple algebraic manipulations 
reduce this system to three or fewer equations in as many variables (depending 
on the type of equilibrium), together with some inequalities. 

These arguments establish that a solution of this system defines an equilibrium; 
Proposition 3 guarantees that if (xl, x2) is in S then every equilibrium of F(x,, x2) 
is associated with a solution of the system. 

As discussed in the Introduction and in Appendix 2, we computed approximate 
solutions to the equations, and checked that they satisfied the inequalities, at a 
large number of location pairs (xI, x2). In region T2 (see Figure 2) the system 
consists of a single equation in one unknown, together with some inequalities. 
At each of the location pairs in T2 for which we made computations, we checked 
that on each side of our approximate solution the function involved has opposite 
signs, so that (by the Intermediate Value Theorem) an exact solution exists close 
to our approximate solution. Thus at each of these location pairs, an equilibrium 
of type T exists close to our e-equilibrium. In region T2 we have to solve two 
or more equations, so that there is no straightforward computation which demon- 
strates that there are exact equilibria close to our approximate ones. 

Contours of the profit of firm 1 for our collection of approximate subgame 
equilibria are shown in Figure 4. 
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FIGURE 4-Contours of the profit of firm 1 in the approximate subgame equilibria. 

The variable xi is the distance of firm i from 0 (i = 1) or 1 (i = 2). The number beside each contour 
is the profit to which it corresponds. The heavy (discontinuous) line is the best response function of 
firm 1; for each value of x2 it selects the value of xl which maximizes the profit of firm 1. 

4. EQUILIBRIUM IN LOCATIONS 

To study the pure perfect equilibrium location pairs, we rely on the computa- 
tions of the approximate subgame equilibria described in the previous section. 
The best response function of firm 1 in the location game is shown in Figure 4. 
There is a unique (up to symmetry) pure equilibrium (x, x) with 0.266 < x < 0.274. 
The subgame equilibrium price strategy when x = 0.27 is shown in Figure 1. 

Since we have not fully characterized the equilibrium payoffs in the subgames, 
we cannot show that there is perfect equilibrium of F in which the firms use 
mixed strategies in the first stage (as well as in the second). However, given the 
symmetry of the game, it is reasonable that such an equilibrium exists. To make 
a specific calculation, we used our approximate subgame equilibrium payoffs to 
construct an approximation of the first stage of F, in which each firm has 21 
strategies (the locations 0, 0.05, 0.1,..., 0.95, 1). Among the class of mixed 
strategy location pairs (xI, x2) in which xI = x2 and each xi is symmetric about 
0.5, there is a unique equilibrium.6 In this equilibrium, the support of each 

6 For each of the 211 possible supports X for a symmetric strategy, we calculated the strategy of 
i with support X which makes j indifferent between all pure strategies in X, and checked if j's payoff 
inside X exceeds that outside X. 
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location strategy extends from 0.2 to 0.8; each strategy is bimodal, most of the 
probability mass being concentrated between 0.2 and 0.4, and between 0.6 and 0.8. 

As mentioned in the Introduction, there is a wide range of Nash equilibrium 
locations. The second-stage action of i which minimizes j's profit is a price of 
zero (assuming that negative prices are not allowed7), in which case j's best action 
is to locate at (1 -xi)/2 and charge a price of (slightly less than) (1 -xi)/2, 
earning a profit of (1- xi)2/4. Thus the strategy pair in which i locates at x* , 
follows the subgame equilibrium strategy if j locates at x4, and otherwise sets a 
price of zero (i = 1, 2), is a Nash equilibrium if i's profit is at least (1 -x*)2/4 
(i = 1, 2). Since we have no analytical expression for the subgame equilibrium 
payoffs, we cannot determine precisely the extent of the Nash equilibrium location 
pairs. However, our arguments in Appendix 1 put a lower bound on the subgame 
equilibrium payoffs, since they put a lower bound on ai (see the discussion of 
(i)). This lower bound implies, for example, that any symmetric location pair 
(x, x) is a Nash equilibrium if 0 -x < 0.46 (i.e., only those location pairs in which 
the firms are very close are not Nash equilibria); most asymmetric location pairs 
are also Nash equilibria. 
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APPENDIX 1: OUTLINE OF PROOFS 

Here we outline proofs of Propositions 1, 2, and 3. (Full details are available upon request.) 
If (Fl, F2) is an equilibrium of r(x,, x2) then a, - 0 for i = 1, 2, since each firm can guarantee a 

profit of zero by setting a price of zero. We also have the following. 
(a) a, - z S a, ' a, + z and bj - z -I b, S b, + z for i = 1, 2: This follows from an examination of i's 

profit when p < aj - z and when p > bj + z. 
(b) If p > 0 is an atom of Fi and xi > 0, then p - z is not an atom of Fj: Under these conditions, 

the profit of j jumps down at p - z, so that this cannot be an atom of Fj. 
(c) If z = 0 and b, exists for some i, or if every consumer has a finite reservation price, then a, = b, = 0 

for i = 1, 2 (i.e., the only equilibrium is pure, each firm charging the price zero): If b, exists then bj exists 
and b, = bi (by (a)). Let bi = bj = b. If b > 0 then it is not an atom of both F, and F, (by (b), since 
z =0 means that xi> 0 for some i). Suppose b is not an atom of F;. Then K,(b, F,) is equal to i's 
equilibrium profit (see (d) of Fact (B) in Osborne and Pitchik (1986)). But K(b, F;) = 0, while 
Ki (p, F;) > 0 for 0 < p < b. Hence we must have b = 0. If every consumer has a finite reservation price, 
then K,(p, q) =0 for all q if p is large enough, say if pBp-. Hence b, -lp; the argument above 
establishes that bi = bl = O. 

This proves the second sentence of Proposition 1. From now on, we assume that z > 0. 
(d) a, > 0 for i = 1, 2, and the equilibrium profit of each firm is positive: This follows from the fact 

that firm i can guarantee a positive profit by setting the price z/2. 
(e) If x, > O and b, = bj - z, then bi is an atom of F, and b3 is not an atom of Fj: If b, is not an atom 

of F, then Kj(b., Fi) = 0 is the equilibrium profit of j (see (d) of Fact (B) in Osborne and Pitchik 
(1986)). This contradicts (d), so that b, is an atom of F,, and so bj is not an atom of F, (by (b)). 

7 Note that if the cost of production is positive (rather than zero), then p, can be interpreted as 
the excess of price over unit cost, so that negative values of p, are meaningful. 
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Subsequently we assume that xi > 0 for i = 1, 2. (All our results hold when xi = 0 for some i, but 
messy arguments are then needed.) The next result implies Proposition 2. 

(f) b,->O for i= 1,2 as z->0: Domination arguments show that K,(b,-z, b,)- Kj(bi-3z, bi), 
which is equivalent to bi, (2+xi)z/x,. 

(g) Ifp is an atom of Fi, then p 
' 

2x,: If p is an atom of Fi then Kj( , Fi) jumps down at p-z 
(if p> z), and at p + z, so that supp Fj contains no point in (p-z,p-z + e) or in (p +z, p + z+e) 
for some > 0. But then K,( , Fj) is increasing on (p, min (p+ e, 2xi)) if p <2xi, contradicting the 
fact that p is an atom of Fi. 

(h) Ifp E supp F, and p is not an atom ofF,, then either p - z E supp Fj or p + z E supp Fj: If neither 
p-z nor p+z is in supp F,, then Ki,(, Fj) is either increasing, constant equal to zero, or strictly 
concave on some neighborhood of p. None of these is consistent with p E supp Fi and p not an atom 
of F;. 

(i) bi 
s 

(bj + m,)/2 for i = 1, 2, and hence bi y,i = min (1 + (x, - x,)/3, 2(1 - xj), 3(1 - xi) - xj) for 
i = 1, 2: This follows from domination arguments. 

We can now restrict the value of zi by making further domination arguments. From (i) we have 
supp F, c [ai, y,] for i = 1, 2, so that if there exists p* such that K,(pi, pj) < Ki(p*, pj) for all aj pj p yj 
and all p, < p, then we must have a, > p,. Let Vi(aj) be the largest such value of i,; then ai V,(aj) 
for i = 1, 2. The precise form of V, is complex; we omit the details. 

Let a* be the minimal value of ai such that a, 
3 

Vi(aj) and aj > Vj(ai) for some aj. Then a, > a* 
in any equilibrium. Thus if a* = y, for i = 1, 2, then the pure equilibrium (p,, P2)= (y, 72) is the 
only possible equilibrium. A very tedious analysis of the functions V,(i = 1, 2) (the details of which 
we omit) shows that this is so for every (x1, x2) in P; this completes the proof of Proposition 1. Also, 
if i - a- < 2z then we know that bi-ai < 2z. This is useful because our subsequent results use the 
assumption that b, - ai < 2z; we show that the only equilibria satisfying this condition are of type T. 
A computation shows that y, -a* s2z for i = 1, 2 whenever (x1, x2) is in S (see Figure 3). Thus the 
second sentence of Proposition 3 follows from the first, which remains to be proved. From now on, 
we assume that b - a, < 2z for i = 1, 2. 

(j) Ifp is an atom of Fi then p = bi: If p is an atom of Fi, then supp Fj excludes intervals just 
above p-z and p+z, so that K,(i, F,) is strictly concave, and hence decreasing, on (p, pf+ e) for 
some E >0. Suppose p < b,, and let p+ (>p + e) be the smallest price in supp F, above p. Then, 
arguing as in (h), each of the intervals of length 8 above p - z and p + z contains either a single atom 
of Fj or no point in supp Fj. To complete the proof, we can show that K,(., Fj) is dominated by a 
concave function which coincides with Ki,(, Fj) close to p (we omit the details). This shows that 
Ki,(p + , Fj) < Ki (f, F,), so that pf+ 8 e supp Fi, contrary to assumption. 

(k) Ifa, <bj - z then [a,, bj - z] c supp F: If a, <p < bj 
- z and p fsupp Fi then, given the previous 

results, Kj(., F,) is strictly concave on an interval around p+z, so that it is not maximized at the 
endpoints of the interval, at which it must equal j's equilibrium profit. 

(1) If a + z < b,, then [aj + z, b,] c supp F,: This follows from an argument similar to that in (k). 
(m) If bj 

- z < aj + z (i.e. if bj 
- 

aj < 2z), then supp F, n(b - z, a + z)= 0 or {bi}: If p suppF, 
and bj 

- z <p < a + z, then p is an atom of F; by (h), so that p = bi by (j). 
(n) If a> a,-z for i=1,2, then b,> a,+z: Since a, is not an atom of Fi (by (j)) we have 

a, + z E supp Fj (by (h)). Hence bj = ai + z. If bj = ai + z, then bj - aj < 2z (since a, > a, - z), so that 
a, is an isolated member of supp F, (by (m), using bj 

- z = a,), contradicting (j). 
(o) If a, > a, -zfor i = 1, 2 then bj is an atom of F if and only if bj - a < 2z: If b - aj < 2z and b3 

is not an atom of Fj, then b - z E supp Fi by (h) (since bj + z > ai + 2z >- b,). Since aj is not an atom 
of F,, we also have a,+zesupp F,. But then K,(., Fj) is continuous and strictly concave on 
[b -z, a ,+z], which means that i's profit cannot be maximized at both endpoints, where it must 
attain its equilibrium value. Hence bj is an atom of Fj. Now assume that bj-aj =2z. Then a, < 
aj + z (=bj 

- z)< b, (the second inequality by (n)), so that by (k) and (1) we have supp Fi = [ai, b,]. 
If Fj has an atom at bj, then K,(, Fj) jumps down at a + z, contradicting the (a.e.) constancy of 
Ki,(, Fj) on supp F,. So bj is not an atom of Fj. 

We can now show that every equilibrium of r(x,, x2) in which bi - a, < 2z is of type T. 
Type TI: If a, > a-z for i= 1,2 then (n), (k), (1), and (m) imply that supp Fi =[a,, bj-z]u 

[aj + z, b,] for i = 1,2. By (o), b, is an atom of Fi if and only if b,-ai < 2z. 
Type T2: If a, = a-z then (k), (1), and (m) imply that supp F = [aj, bj], and supp F, = 

[aj 
- z, bj 

- z] or [aj-z, bj - z] u {b,}. In the first case bj 
- z is an atom of F, and bJ is not an atom 

of F, by (e); in the second case b, is an atom of F, (otherwise i's payoff in (bj-z, b,) exceeds that 
at bj- z and at b,, as in the proof of (o)), and b, is an atom of F,. 
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APPENDIX 2: NOTES ON COMPUTATIONAL TECHNIQUES AND ACCURACY 

Techniques 
As discussed in Section 3, the problem of finding an equilibrium of type T can be reduced to that 

of simultaneously solving three or fewer (depending on the value of (xl, x2)) equations of the form 
g(Y, .,Yk) = 0 in as many unknowns, and checking that the solution satisfies a number of 
inequalities. To find an approximate solution of the equations for a particular pair (x,, x2) of locations, 
we evaluated the left-hand sides of the equations at each point in a grid, found the point in the grid 
which generates the lowest sum of absolute values of these left-hand sides, and then repeated the 
procedure on a smaller grid. We stopped this iterative procedure when we obtained an absolute value 
for the sum of the left-hand sides less than 10-7. We then used the resulting parameter values to 
calculate equilibrium payoffs and equilibrium strategies, and to check that the inequalities are satisfied. 
We carried out this procedure for about 350 pairs (xI, x2). (This involved computations at 175 points, 
given the symmetry of the problem). All calculations were performed by a DEC 20 computer, 
programmed in APL, with an internal precision of about 18 decimal digits. 

Accuracy 
1. The integrals in (1) can be expressed only as infinite series. Let I(t) = -e' t +ln I|t +Y'= t"n nn!. 

Then Jb h(s, x, z) = (I((b - z)/2x) - I((a - z)/2x))/2x (integrating as discussed in the text). We used 
the first 25 terms to approximate the infinite series in I. This approximation is better, the smaller is 
the absolute value of the argument of I. For x1 = x2 = 0.27 (the approximate pure location equilibrium) 
we have a = -p and b=-ai for the integral in Fi(p) on [ai,bj-z], and a=p and b=bi for the 
integral in F,(p) on [a,+z, bi] (see (1)). Given that ai,0.5 and bil for i=1,2 in this case, 
(b-z)/2x--1.78 and (a-z)/2x ranges between -1.78 and -1.85 in the first integral, and (b- 
z)/2x- 1 and (a -z)/2x ranges between 0.93 and 1 in the second integral. This means that the 
omitted terms in the infinite series are of the form t"/ nn!, with -1.85 < t < 1 and n 3 26; the absolute 
value of the sum of all such terms is at most (1/26)[r26/26!+ r27/27!+ . .], where r = tl, which is 
at most err26/26 x 26! (using an upper bound for the Lagrange form of the remainder term in the 
expansion for er). Given that -1.85 < t < 1, this is less than 10-20, and hence the approximation error 
is less than the computational error. As x, and x2 vary, this error changes. However, an analysis of 
the various cases shows that the error does not exceed 10-14 at any of the points (xl, x2) we studied. 

2. The solution we find is also only approximate because we find parameter values which solve 
the nonlinear equations only to within 10-7. Since the length of the support of every equilibrium 
strategy is at most 1, and our solution guarantees that the derivative of the payoff is at most 10-7, 
the payoff of each firm varies by at most 10-7 on the support. For prices outside the support, our 
computations (and in some cases analytical arguments) show that the payoff is less then the equilibrium 
payoff. Hence the equilibria we find are e-equilibria for e < 10-7. 
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