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1. INTRODUCTION 

While much has been written recently on the economics of research and development, 
most theoretical studies have focused on investment in research when the feasibility and 
profitability of the innovation may be stochastic (for references see Reinganum (1980a, 
1980b). These authors are especially concerned with the relationship between market 
structure and the pace of inventive activity. However, the perfection of a new and superior 
technology confers neither private nor social benefit until that technology is adopted and 
employed by potential users. In an industry with substantial entry costs, perfection and 
adoption of an innovation are not necessarily conterminous. While there are many 
industry-specific and innovation-specific case studies of the diffusion of new technology, 
the theoretical literature is extremely sparse. 

This paper is an attempt at a rigorous (albeit not exceedingly general) analysis of the 
diffusion of new technology. In particular, consider an industry composed of two firms, 
each using the current best-practice technology. The firms are assumed to be operating at 
Nash equilibrium output levels, generating a market price (given demand) and profit 
allocations. When a cost-reducing innovation is announced, each firm must determine 
when (if ever) to adopt it, based in part upon the discounted cost of implementing the new 
technology, and in part upon the behavior of the rival firm. If either firm adopts before the 
other, it can expect to make substantial profits at the expense of the other firm. On the 
other hand, the discounted sum of purchase price and adjustment costs may decline with 
the lengthening of the adjustment period as various quasi-fixed factors become more easily 
variable. Therefore, although waiting costs the firm more in terms of foregone profits, it 
may save money on the cost of purchasing the new technology. Thus the firm must weigh 
the costs and benefits of delaying adoption, as well as take account of its rival's strategic 
behavior. This problem is formalized and discussed in Section 2. In Section 3 it is shown 
that there exist two asymmetric Nash equilibria in pure strategies. That is, at a Nash 
equilibrium, one firm will adopt the innovation at a relatively early date, the other 
relatively later. Thus even in the case of identical firms and complete certainty, there is a 
"diffusion" of innovation over time. Section 4 extends the analysis to the case of 
non-identical firms. In this case, it is shown that a Nash equilibrium exists and 
is asymmetric. The basic model, though independently developed, closely parallels that of 
Flaherty (1980). For a discussion of the relationship between this work and that of 
Flaherty, see Section 4. Section 5 concludes the paper. 

395 
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396 REVIEW OF ECONOMIC STUDIES 

2. PROBLEM FORMULATION 

Consider a pair of identical firms engaged in a game of duopoly. They are making Nash 
equilibrium profits' of (ro, 1o) per period. At t = 0 a technological improvement designed 
to reduce production costs is announced and offered for sale. 

If firm 1 purchases the new technology before firm 2, then the profit allocations are 
(X1r, T2) during each period before firm 2 adopts the innovation. Similarly, if firm 2 adopts 
first, then the profits are (1r2, ITl) per period until firm 1 adopts. After both firms have 
adopted the innovation, profits are (13, IT3). The industry environment is assumed 
stationary except for the introduction of the new technology, and no further technical 
advance is anticipated. For an analysis of a single firm's reaction to anticipated technical 
advance, see Kamien and Schwartz (1972). 

Letting T1 and T2 denote the adoption dates of firms 1 and 2, respectively, we can 
summarize the profit opportunities described above in tabular form. 

Player 
t 1 2 

0<t?min{T, T2} ITO ITO 

Tl_t < t T2 171 Tr2 

T2 < t < T1 1T2 71T 

oo > t?_ max {T1, T2} 1r3 IT3 

The following assumptions describe the relative magnitudes of the profit rates. 

Assumption 1. 7i > 0 Vi e {0, 1, 2, 3}. 

Assumption 2. r1 > IT3 > 1r2; Ir1 > To > 2 

Assumption 3. a = Ii -7rO +n-r2 - IT3 > O. 

Assumption 1 states that in any event, both firms make positive profits. Assumption 2 
implies that profits to firm i are greatest when i has adopted the innovation but i has not; 
next greatest profits occur either when both have adopted or when no firm has yet adopted; 
finally profit opportunities for i are worst when i has adopted the innovation but i has not. 
Assumption 3 states that the increment to revenue when one is first exceeds the increment 
to revenue when one is second. Alternatively, the net value of being first, a= 

(r-1- 70) - (3 - 2), is positive.2 
Define p(t) to be the discounted price of the innovation at t. This may be assumed to 

include all relevant costs of adjustment. Assume that this function exists and is C2 for all 
t E [0, oo), though purchases may take place at selected dates rather than continuously. 

Let r represent the market rate of interest. The firms' payoffs are given in Definition 1 
below. 

Definition 1. The payoff to firm 1 is 

91{(T1 T2) ifTl _ T2 O ,T2) T2fT 

where 
Tg T2 +? 

g1(Tb T2)= | To e-rt dt+ IT,v e-rt dt + T3e e-rt dt - p(T1) 
O ~~~T1 T 
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REINGANUM DIFFUSION OF TECHNOLOGY 397 

and 
T2 _ Ti 00 

g 2(T, T2) i= o e rtdt 1T2 e-rtdt + 7 e-rtdt_p(Ti). 
O T2 Tj 

The payoff to firm 2 is simply V2(T1, T2) V1(T2, T1). To avoid confusion (and 
without loss of generality) I will deal almost exclusively with firm l's decision problem. 
The corresponding results for firm 2 can be deduced by symmetry. 

Notice that while V1(Tl, T2) is continuous in T1 for fixed T2, it is not differentiable at 
T = T2. The left-hand derivative at T2 is 

gl (T2, T2) = (7ro- r1) e.rT2 p'(T2) 

while the right-hand derivative at T2 is 

g9(T2, T2) = (T2- T3)e rT2_p'(T2). 

By Assumption 3, gl (T2, T2) < g2 (T2, T2) VT2 E [0, co). 

Assumption 4. Assume p(t) '?0 and p"(t)> r[r1 - ro]e-rt Vt E [0, oo). Further 
assume that limt .. p'(t) > 0. 

Since p (t) represents the present value cost of implementing the new technology over 
the adjustment period t, Assumption 4 states that cost saving can't continue forever. 
Rather, there is some optimal adjustment period beyond which any further prolongation 
of the adjustment process begins to increase costs. Without this assumption, firms may 
postpone adoption forever. Since one is primarily interested in the timing of adoption 
by strategic players (rather than circumstances under which nonadoption is optimal), 
Assumption 4 will be maintained throughout. Assumptions 1-3 will also be maintained 
throughout. One of the versions of Assumption 5 below will be specified as a hypothesis in 
the results which follow. 

Assumption 5a. p'(0) < 72 - T3. 

Assumption 5b. p'(0) ' 1T - T3. 

Under Assumption 4 it is easy to show that g1(Ti, T2) and g2(Tl, T2) are strictly 
concave3 in T1 (for fixed T2). To see this, note that gil = r(7r - 7ro) ert -p"(t)<0 by 
Assumption 4. Since g11 = r(r3 - T2) ert -p"(t)and r3 - r2 < ir- iTo by Assumption 3, 
gi l < 0. In addition, one can prove the following preliminary lemmas. 

Lemma 1. 3 unique T e [0, oo) and T1 e [0, oo) which maximize g1(Tl, T2) and 
g2(T1, T2), respectively, independent of T2. Furthermore 

(a) if Assumption 5a holds, then 0? T< oo and 0 < T < oo. 
(b) if Assumption 5b holds, then TA= T = 0. 

Proof. VT2[lim,t OOgl (t T2) = limt-. (X0o-r1) ert -p'(t) <O] by Assumption 4.4 
By strict concavity and continuity of g1, there exists a unique T E [0, oo) which maximizes 

g1(Tl, T2). T is defined (independent of T2) by 

(Io- r1) erT _p(T) _0 0 T '--, and [(o -I1) e rT-p'(P)]T = 0. (3) 

If Assumption 5b holds, then VT2[gl (0, T2) < 0], so T =0. 

VT2[limt .O g2 (t, T2) = lim,O (T2 - T3) e-rt -p'(t) < 0] by Assumption 4. 
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398 REVIEW OF ECONOMIC STUDIES 

By strict concavity and continuity of g2, there exists a unique T E [0, oo) which maximizes 
g2(Ti, T2). T is defined (independent of T2) by 

(X22-1T3) erT p'(T) _ O, T _ O, and [(X2-T3) erT -(p'(T)]T = 0. (4) 

If Assumption 5a holds, then VT2[gl (0, T2) = (r2 - T3) -p(O) > 0], SO T> 0. If Assump- 
tion 5b holds, then VT2[g2 (0, T2) = (T2 - T3) -p'(O) - 0], and strict concavity (gh2 <0) 

implies that T = 0. || 

Condition (3) states that if the first adopter is to adopt after some dIelay (T > 0), then 
the marginal (discounted) opportunity cost of waiting, (T1-ro)e-rT, must be exactly 
off-set by the marginal (discounted) cost savings due to waiting, -p'(T). If the marginal 
(discounted) opportunity cost of waiting exceeds the marginal (discounted) cost savings for 
all T, then immediate adoption is optimal (T = 0). Condition (4) has a similar inter- 
pretation for the second adopter. 

Lemma 2. If Assumption 5a holds, then T > T. 

[g2 ~~~~~~~~~~~~~~~A Proof. Note that VT2[g2 (t, T2)> gl (t, T2)Vt E [0, oo)]. By Lemma 1, oo > T > 0 and 
A ~~~~~~~~~~~~A A2 A 

T < oo. Thus the corner case is obvious: if T =0, then T> 0 implies T> T. Suppose 
T>0. Now VT2[(g, (T, T2)> gl (T, T2) = 0]. Since gi (T, T2) =0 and g2(, T2) is strictly 

A2 A 

concave, T> T. 

3. NASH EQUILIBRIUM IN PURE STRATEGIES 

The problem set out in Section 2 (that of determining an optimal adoption date when a 
competitor exists) can be modeled and solved in a game theoretic framework. 

Definition 2. The strategy space for player i is Si = [0, oo). A pure strategy for i is a 
scalar Ti E Si. 

Definition 3. The set of best responses for i to T1 is i(T1) = {Ti E Si I V1(Ti, Tj)> 
Vi (T', Tj) VT! E Si}. 

The mapping Xi: Sj > Si is i's best response correspondence. 

Definition 4. A strategy pair (TN, T N) is a Nash equilibrium for the game G= 
(V1, V2, Sl, S2) if 

(a) TPTESi,i=1,2; 
(b) V1(T N 

T'N)? V1(T1, T N) VT, e S; and 
(c) V2(TN T2N) ' V2(TN T2) VT2 E S2. 

Alternatively, the pair (TiN, T2N) is a Nash equilibrium if T!N E 01(T2') and T2f E 
02(T N); that is, each strategy is a best response to the other. 

Theorem 1. 
(a) If Assumption 5a holds, then there exist 2 Nash equilibria in pure strategies5 

(Tl", T2i) = (T T) and (T,, T2N) - (T, T) 
(b) If Assumption 5b holds, then there exists a unique (Tlj, T2f) = (0, 0). 

Proof 
(a) See below 
(b) It is clear from Lemma 1 that immediate adoption is a dominant strategy for each 

firm. II 
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REINGANUM DIFFUSION OF TECHNOLOGY 399 

Before proceeding to prove part (a), consider the implications of Theorem 1. There is 
the degenerate case (b). In this case, adjustment costs do not decline sufficiently rapidly as 
to warrant waiting. Thus, regardless of rival behavior, the best action a firm can take is to 
adopt immediately. 

Excepting this degenerate case, we see that, if there is a net value to being first 
(Assumption 3), then at a Nash equilibrium one firm adopts early (at T), while the other 
adopts late at T). It is never a Nash equilibrium for identical firms to bring the new 
technology on line at the same date. Hence even in the case of identical firms and complete 
certainty, there will be a diffusion of the innovation over time. 

The proof of Theorem 1(a) is accomplished via a series of lemmas. 

Lemma 3. g1(Tl, T2) < g2(T1, T2) as T1, T2. 

Proof. gl(Ti, T2)-g2(Tl, T2) =(ae/r)(erT1-erT2) O as T1 T2. 

Lemma 4. g2(T, T)>g1(T, T). 

Proof. g2(T, T) > gT(T, T) = g1(T, T), where the inequality follows from Lemma 1. 
The equality follows from Lemma 3. || 

Lemma 5. g 1( T, )>g2(T, 1). 

Proof. g (T, T)> gT(i, T) = g2(T, T), where the inequality follows from Lemma 1. 
The equality follows from Lemma 3. || 

Lemma 6. 3TE (TT, ) such that g1(T, T2)Ag2(T T2) as T2' T. 

Proof. Let -y(T, T, T2)=g (T, T2)-g2(T, T2). By Lemma 4, y(T, T, T)<0. By 
Lemma 5, y(T, T, T) > 0. Since ay/aT - a eT r> 0, it follows by the intermediate value 
theorem and the monotonicity of y in T2 that 3 a unique T E (T, T1) such that y( T,(A T2) ' 
Gas T2T. || 

Figures 1-3 illustrate Lemmas 3-6. 

Lemma 7. 

IT for T2<T 
01(T2) = {T, T} for T2= T 

VT for T2 > T 
Proof. Recall Definition 1 

I 1(T1,T2) 1T 

g2(T1, T2) T1 T2 

The reasons for the various relations are found in parentheses immediately below the 
relation itself. 

Case 1. T2< T. 

VT1,T2[V1(g T2)=g2(T T2)>gl( T2)gl(Tl, T2)= V1(T1, T2)] 

(Def. 1) (Lemma 6) (Lemma 1) (Def. 1) 

VT1 _ T2, T1 $ T[V'(A , T2) = g2(T, T2) > g2(Tl, T2) = V1(T1, T2)]. 

(Def. 1) (Lemma 1) (Def. 1) 
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gl.g2 

9g' ( * , T 9) 

1 T~~~~9 T 

A T~~~~~~~~~~~~~~~~, 
T T T 

FIGURE 2 

Thus VT1 $ T[V1(T T2)> V1(T1, T2)]. Hence 01(T2)= T for all T2< T. 

Case 2. T2= T. 

VT,-1T, T1T[ V1(T, T) =g1(T, T)>g1l(Ti, T)= V1(T1, T)]; 

(Def. 1) (Lemma 1) (Def. 1) 

VT1 T,T1OT[V (T, T)=gg(T, T)>g2(T ,T)= V1(T, T)]. 

(Def. 1) (Lemma 1) (Def. 1) 
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FIGURE 3 

But since g1(T1T)=g2(T,T) by Lemma 6, V(T,j T) V( T)> VW(Tm,T) 

VT1 {T, TA}. Thus q51(T) = {T, T}. 

Case 3. T2> T. 

adT'T2, T1$T[V1(T, T2)=g1 (T, T2)>g1 (T,, T2)= V1(T1, T2)]. 

(Def. 1) (Lemma 1) (Def. 1) 

VT1?T2[V1(T T2)=g'(T, T2)>g2 (T, T2)?g2(Ti, T2)= V1(T1, T2)]; 

(Def. 1) (Lemma 6) (Lemma 1) (Def. 1) 

Thus VT1 T T[V1(t, T2)> V1(T,, T2)]. Hence ck(T2) T for all T2> T. 

The best response correspondence b1(T2) is shown in Figure 4. 

Proof of Theorem 1 (a). By symmetry, 
,AA 

T for T,<T 
02(TI) = I{T, T} for T1 = T. 

(T for T1 > T 

It is apparent that the best response correspondences intersect at two distinct points, 
(T, T) and (T, T), as shown in FigureS. 5. 

Recall that interior T and T are determined by equations (3) and (4), repeated here 
for convenience: 

g9 =-(7r1 -mo) erT -p'(T) =0 (5) 

91 =(Xr3 -'2) e -p (T) = . (6) 
Notice that the adoption dates depend on the profit rates only through the relevant 

opportunity costs of delaying adoption one period-(-Tr1 - 1TO) for T and (Xr3 - D2) for T. 
Comparative statics results are summarized in a corollary to Theorem 1. 
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4. GENERALIZATIONS 

This model may be generalized in at least three directions. First, one may extend the 
analysis to n identical firms. It is conjectured that this will result in n! Nash equilibria 
obtained from each other by permuting the indices of the players. While rigorous analysis 
of the n-player game would probably not be difficult, it would be extremely messy and is 
not likely to add substantially to the implications of the 2-player case. It would be 
interesting, however, to examine comparative statics in n. 

One can extend the analysis to include uncertainty regarding rl, r2 and T3 simply by 
interpreting these as mean post-adoption profit opportunities. Finally, one can generalize 
the model to allow for asymmetric firms. Define ir', ir and m' in the obvious way; also 
define 1T (j $ i) to be i's profit rate when i has adopted but i has not. Add a subscript to 
pi (Ti), the discounted price (plus adjustment costs) to indicate possible scale advantages. 
One need not indicate which firm is the more efficient-either at production or at 
technology implementation-at this point. However, the appropriate analogues of 
Assumptions 1-4 and Assumption 5a will be retained. 

The payoff to player i is now 

i (Tl, T2) T' 
where 

gil (T T2)=J 
| e& rt4fO dt+ e rtridt+J e -t1r' dt-pi (Ti) gilTl 

T2i =Tj 

and 

gi2(Tl, T2) = |er'wr t + er' t+le -rtXdtp(T) 
gi2(TiT2)=j* O't+J e- ir dt ertir' dt-pi(Ti). 

Lemmas 1-7 in no way depended on the symmetry of the players. Thus the best 
response correspondences become 

AA 
Ti Tj < Ti 

Oi(Tj)= Ti, Ti} Tj = Ti 

A . it~~~~~~~~~ (Ti Tj > Ti 

where Ti and Ti (> Ti) maximize gi and gi2, respectively, independent of Tj (1j i); and 

TiE (Ti, Ti) is the unique solution of gil(A, t) = gi2(7 t). 

Now although it is easily shown that Ti > Ti, i = 1, 2, one has no idea of the rankings of 
j's optimal dates relative to i's, especially since I have not specified which firm is "more 
efficient," nor even any notion of efficiency. However, one can still prove the following 
theorem characterizing Nash equilibrium with non-identical firms. 

Theorem 2. Under the appropriate analogues of Assumptions l-5a, 
(a) There is at least 1 (and no more than 2) Nash equilibrium. 
(b) All Nash equilibria are asymmetric in the sense that firms will never adopt the new 

technology simultaneously. 

Proof. 
(a) k1(T2) is non-increasing and, when graphed in (T1, T2) space, consists of two 

horizontal half-lines which cover [0, oo); 02(T1) is non-increasing and, when graphed in 
(T1, T2) space, consists of two vertical half-lines which cover [0, oo). They must intersect at 
least once and can intersect no more than twice. 
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(b) It is sufficient to show that matching is never a best response: VTj, TpZ 1i(Tj). 
Now VTj<Ti, qi(Tj)=Ti>Ti; for Tj=Ti, i(Ti)= {Ti,Ti} where Ti < Ti and 
Ti > Ti; and VTj > Ti, Oi(Tj)=Ti < Ti. Thus VTj, Tjq Oi(Tj). I 

Let us now relate this to Flaherty (1980). Using a slightly different model, Flaherty 
focuses on the question: will a larger (lower cost) firm commercialize a new technology 
earlier than a smaller (higher cost) firm? If the larger firm has a sufficiently large 
comparative advantage in implementing the new technology, then there exists a Nash 
equilibrium in which it will adopt sooner than a small firm. If the large firm has no 
comparative advantage, then there exists an equilibrium in which the smaller firm adopts 
first. However, in either case there may exist a second equilibrium in which the pattern is 
reversed. Analysis of the piresent model with asymmetric payoffs yields similar results 
(Reinganum, 1980c). 

5. CONCLUSIONS 

The choice of the date of adoption of a new technology has been modeled as a 2-person 
nonzero-sum game. Under Nash behavior we find that there exists a pair of equilibria in 
pure strategies (for identical firms). Each Nash equilibrium involves one firm adopting 
relatively early with the other adopting at a relatively late date, despite the facts that 
information is perfect and players are identical. For non-identical firms, a Nash equili- 
brium always exists and is asymmetric so long as the net value of being first is positive. 

It is clear that a substantial modeling job remains-that is, to integrate optimal 
behavior (or strategic behavior) on the part of a seller of the new technology (see Stokey, 
1979). Furthermore, there may be information regarding the value of the innovation to be 
gained by waiting. For an analysis of a single firm's decision problem in the face of such 
uncertainty, see Jensen (1979).. 

First version received April 1980; final version accepted February 1981 (Eds.). 

I would like to thank E. Green, J. Jordan and participants in the California Institute of Technology 
Economic Theory Workshop for helpful comments. 

NOTES 
1. In light of the results on repeated games, I should specify that these are to be regarded as stage game, 

rather than supergame, equilibrium profits. 
2. It is easy to verify that Assumptions 1-3 hold for simple demand curves (e.g. P = a - bQ, P = a + b/Q, 

P = a - b ln Q) when marginal costs are constant. Whether Assumptions 1-3 hold for general cost and demand 
functions, and for a more general specification of cost reduction, is an open question at this time. 

3. If limt.,0 p'(t) ? 0 and strict concavity is maintained, then VT2[limt.. gt (t, T2) 0] so V T2[gl (t, T2) > 
O Vt < oo] and i a nAiaximizing value T. Similarly, VT2[limt,. g2 (t, 12) '-0] so ;J2[g1 (t, T2) > 0 Vt < oo] and 3 a 
maximizing value T. If strict concavity is relaxed, optimal adoption dates T and T may exist regardless of the sign 
of limt,. p'(t). However, the existence of such dates would be difficult to verify without specifying the functional 
form of p(t). 

4. The notation VTi[.] means "for all values of Ti in [0, co), the bracketed statement is true". 
5. It is shown in Reinganum (1980c) that there also exist symmetric Nash equilibria in both discrete and 

continuous mixed strategies. A Nash equilibrium in discrete mixed strategies is to play T with probability A * and 
T with the complementary probability, where 

A (7T1 - 7ro)/a - r[p(T) p(T)]/a[erT_ e-rT] 

A Nash equilibrium in continuous mixed strategies is 

FN (t) = Pr {Ti ' t} = (l/a)[p'(t) ert + 7rl -_], 

for tE[T, T]. 
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